संपर्क में रहो
Close

उन्नत विश्लेषण और निर्णय स्वचालन के लिए मशीन लर्निंग का उपयोग

कैनोइंग परिणामों की भविष्यवाणी, वर्गीकरण और अनुकूलन के लिए मशीन लर्निंग मॉडल लागू करें।

iSquad के स्वचालन के साथ संबद्धता, पंजीकरण और सदस्यता के प्रबंधन को बदलें। खिलाड़ी पंजीकरण से लेकर लाइसेंस सत्यापन और सदस्यता प्रबंधन तक, सब कुछ एक आसान-से-उपयोग वाले प्लेटफ़ॉर्म में केंद्रीकृत है।

मशीन लर्निंग कैनोइंग समाधानों को बड़े डेटासेट में पैटर्न पहचानने और अनुशंसाओं को स्वचालित करने में सक्षम बनाता है। अनुप्रयोगों में रेस के परिणामों की भविष्यवाणी करना, खिलाड़ी के प्रदर्शन को वर्गीकृत करना, प्रशंसक व्यवहार को विभाजित करना और प्रशिक्षण कार्यक्रमों को अनुकूलित करना शामिल है। अधिक डेटा एकत्र होने पर लर्निंग मॉडल अनुकूलित होते हैं, समय के साथ बेहतर होते जाते हैं। वे प्रशिक्षकों, प्रशासकों और कैनोइंग संघों को तेज़, साक्ष्य-आधारित निर्णय लेने में मदद करते हैं। एकीकृत एमएल सिस्टम डेटा की स्थिरता सुनिश्चित करते हैं और कैनोइंग संचालन में दक्षता के नए स्तरों को अनलॉक करते हैं।

Canoeing management software for federations, events, and athlete tracking

पूर्वानुमानात्मक प्रदर्शन मॉडलिंग

  • खिलाड़ी के आउटपुट का पूर्वानुमान
  • चोट की संभावना का अनुमान
  • मॉडल प्रशिक्षण प्रभाव
  • चालक दल के तालमेल का मूल्यांकन
  • रेगाटा परिणामों का अनुकरण

स्वचालित वर्गीकरण इंजन

  • खिलाड़ी की भूमिकाएँ स्वचालित रूप से टैग करें
  • खेल शैली के पैटर्न का पता लगाएँ
  • अधिकारियों को मीट्रिक के आधार पर समूहबद्ध करें
  • अनुशासनात्मक घटनाओं को समूहबद्ध करें
  • जोखिम स्तरों को वर्गीकृत करें

सीखने की प्रतिक्रिया लूप

  • उपयोगकर्ता सत्यापन के साथ सुधार करें
  • नए सत्रों पर पुनः प्रशिक्षण दें
  • मॉडल सटीकता स्कोर करें
  • सिंथेटिक डेटा के साथ परीक्षण करें
  • प्रशिक्षित मॉडल रिपोर्ट निर्यात करें

क्या आप सिस्टम देखना चाहते हैं? डेमो बुक करें

आपकी जरूरत की हर चीज
के बारे में जानना

एक तकनीक जो प्रणालियों को डेटा से सीखने और पूर्वानुमान या वर्गीकरण करने की अनुमति देती है।

मशीन लर्निंग एआई का एक उपसमूह है जो विशेष रूप से पैटर्न पहचान और डेटा-संचालित भविष्यवाणियों पर केंद्रित है।

तकनीकी दल और विश्लेषक शिक्षण प्रणालियों को कॉन्फ़िगर, मॉनिटर और परिष्कृत करते हैं।

हां, इसे स्काउटिंग, प्रशिक्षण, रेगाटा और सहायता प्रणालियों में लागू किया जा सकता है।

वे नए डेटा के संपर्क और उपयोगकर्ता इंटरैक्शन से प्राप्त फीडबैक के साथ बेहतर होते जाते हैं।

हमारे पास खेल की सभी आवश्यकताओं को पूरा करने के लिए पर्याप्त मॉड्यूल हैं